Nonparametric Regression in Exponential Families by Lawrence

نویسندگان

  • D. BROWN
  • T. TONY CAI
  • HARRISON H. ZHOU
  • H. H. ZHOU
چکیده

Most results in nonparametric regression theory are developed only for the case of additive noise. In such a setting many smoothing techniques including wavelet thresholding methods have been developed and shown to be highly adaptive. In this paper we consider nonparametric regression in exponential families with the main focus on the natural exponential families with a quadratic variance function, which include, for example, Poisson regression, binomial regression and gamma regression. We propose a unified approach of using a mean-matching variance stabilizing transformation to turn the relatively complicated problem of nonparametric regression in exponential families into a standard homoscedastic Gaussian regression problem. Then in principle any good nonparametric Gaussian regression procedure can be applied to the transformed data. To illustrate our general methodology, in this paper we use wavelet block thresholding to construct the final estimators of the regression function. The procedures are easily implementable. Both theoretical and numerical properties of the estimators are investigated. The estimators are shown to enjoy a high degree of adaptivity and spatial adaptivity with near-optimal asymptotic performance over a wide range of Besov spaces. The estimators also perform well numerically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Regression in Exponential Families

Most results in nonparametric regression theory are developed only for the case of additive noise. In such a setting many smoothing techniques including wavelet thresholding methods have been developed and shown to be highly adaptive. In this paper we consider nonparametric regression in exponential families which include, for example, Poisson regression, binomial regression, and gamma regressi...

متن کامل

Nonparametric Regression in Natural Exponential Families

Abstract: Theory and methodology for nonparametric regression have been particularly well developed in the case of additive homoscedastic Gaussian noise. Inspired by asymptotic equivalence theory, there have been ongoing efforts in recent years to construct explicit procedures that turn other function estimation problems into a standard nonparametric regression with Gaussian noise. Then in prin...

متن کامل

Asymptotic Equivalence Theory for Nonparametric Regression With Random Design

This paper establishes the global asymptotic equivalence between the nonparametric regression with random design and the white noise under sharp smoothness conditions on an unknown regression or drift function. The asymptotic equivalence is established by constructing explicit equivalence mappings between the nonparametric regression and the white-noise experiments, which provide synthetic obse...

متن کامل

NYU Stern School of Business Department of Information, Operations & Management Sciences STATISTICS RESEARCH SEMINAR

Much of the nonparametric regression theory is focused on the case of additive Gaussian noise. In such a setting many smoothing techniques including wavelet thresholding methods have been developed and shown to be highly adaptive. In this talk we consider robust nonparametric regression, where the noise distribution is unknown and possibly heavy-tailed, and generalized nonparametric regression ...

متن کامل

Targeted Maximum Likelihood Estimation using Exponential Families.

Targeted maximum likelihood estimation (TMLE) is a general method for estimating parameters in semiparametric and nonparametric models. The key step in any TMLE implementation is constructing a sequence of least-favorable parametric models for the parameter of interest. This has been done for a variety of parameters arising in causal inference problems, by augmenting standard regression models ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010